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Spatial resonance of a liquid-filled vibrating beaker 
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Mahony & Smith (1972) put forward a model to explain the phenomenon of 
energy transfer between nearly resonant oscillations at  greatly differing fre- 
quencies. However, their model of ‘spatial resonance ’ is restricted to situations 
where the geometry of the system is very simple. The present paper shows how 
to derive Mahony & Smith’s equations in a general manner, and compares the 
theoretical predictions for a situation with circular symmetry with existing 
experimental results (Huntley 1972). In  addition, it suggests a simple method for 
evaluating the resonance frequencies when a liquid-filled beaker is vibrated in one 
of its bell modes. 

1. Introduction 
Huntley (1972) presented the results of a series of experiments in which a 

beaker almost completely filled with water was vibrated continuously near one 
of its bell-mode resonance frequencies. (These are the gravest elastic vibrations 
of an open-ended shell: the modes in which a wine glass rings after being tapped.) 
In  certain ranges of the frequency and amplitude of these vibrations large ampli- 
tude standing waves were seen to build up in the water, generally reaching an 
amplitude of several centimetres even though the beaker wall was moving less 
than a millimetre. The outstanding features of the phenomenon were that the 
water-wave frequency was always a small fraction (typically about &) of the 
excitation frequency, and that if the bell mode had a peripheral wavenumber 
k 2 2 (i.e. there were 2k nodes spaced around the circumference of the beaker) 
then water waves might be generated with a wavenumber of either zero or 2k. 
Thus none of the familiar mechanisms for energy transfer between wave modes 
appeared to be relevant. 

In  an accompanying paper, Mahony & Smith (1972) put forward a model to 
explain the transfer of energy through nonlinear coupling between lightly 
damped, nearly resonant oscillations at  greatly differing frequencies, and the 
phenomenon described by Huntley was thought to be an example of such a 
‘ spatial resonance ’ phenomenon. For mathematical tractability, however, 
Mahony & Smith developed their model with respect to a geometrically simple 
situation (a rectangular enclosure with infinitely deep water), and so a rigorous 
comparison between the theory and the beaker experiment was not possible. The 
procedure that was adopted by Huntley, therefore, was to fit the experimental 
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FIGURE 1. Schematic explanation of the Mahony & Smith model. 

data to Mahony & Smith's formulae by means of one adjustable parameter. This 
parameter was the product of the nonlinear coupling coefficients and occurred 
simply as a proportionality factor in the expression for the neutral-stability 
curve. (This is the graph against frequency of the critical value of the vibration 
amplitude above which the high frequency vibrations become unstable and lose 
cnergy to the water waves.) Thus although t,he excellent fit between theory and 
experiment was strong evidence for the validity of the Mahony & Smith model, 
nothing was proved. 

A schematic explanation of the Mahony & Smith model can be given in terms 
of the generation of side-band high frequency modes (see figure 1). The system is 
vibrated at  a frequency w close to the resonance frequency s2 for a particular bell 
mode with spatial variation X(x). Thus we can expect this mode to dominate the 
motion. In  any real situation, however, we should also expect to have present a 
small amount of the natural low frequency water wave Y ( x )  eiut. The quadratic 
coupling between these two modes owing to the nonlinear boundary condition 
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a t  the (moving) free surface can be interpreted as a weak direct forcing, to  which 
there will be a significant response only when u < w and thus a t  least one of the 
two frequencies w _+ (T lies within the resonance bandwidth of the high frequency 
mode. If we assume that the shape of this forcing is not too dissimilar from X, 
then there will be a significant response in the X mode a t  one of the side-band 
frequencies w 5 cr. This side-band mode in turn couples with the driven mode 
X eiwt through the Bernoulli pressure condition a t  the free surface, and provides 
weak forcing at  the frequency (T. This is precisely the frequency of the natural Y 
mode, and provided that a shape requirement is again satisfied the weak forcing 
may be able to overcome the natural damping Y’ of the wave and so sustain the 
low frequency mode. It should also be noted that this model automatically leads 
to a finite threshold for the amplitude of the high frequency drive, below which the 
natural mode dies away. If we denote the amplitude of XeiWt by d and that of 
Yeiut by 99, the diagram shows that the amplitude of the low frequency forcing 
is proportional to d 2 B .  The damping of the low frequency mode, however, is 
directly proportional to  B. Thus for small driving amplitudes the damping 
dominates, whilst for large amplitudes the nonlinear forcing dominates. 

Although the Mahony & Smith model considers only one side-band pair 
w +_ (T, it is not immediately obvious why other interactions are not included: all 
the side bands are generated simultaneously, and so a quadratic interaction 
between the modes mw 2 nu and mw _+ ( n  + 1) u (m, n integral) may be capable 
of driving the original low frequency water wave a t  frequency u. However, for 
m =k 1 the frequency mw is well outside the resonant bandwidth of the high fre- 
quency mode L2 and so the response in this mode is effectively zero. Thus we can 
discount all interactions except those of the form 

o _ + n a , w + ( n + l ) c r - + u <  w ,  

and investigate the relative sizes of these modes. To do this we assume the exist- 
ence of a water wave whose magnitude is of order 6 (thus 6 is a small parameter 
equal to zero initially). If we denote the amplitude ofthe high frequency mode by 
d(t) and that of the low frequency mode by 99(t), then to  zero order in 6 (i.e. 
before a wave is present) the solution is just the response to a forcing term P, i.e. 

d 2 d / d t 2  + Q2d = Feiwt. 

This has solution F d - e iw t  Aeiut 
Q2 - w2 

, 

where A is sufficiently small for the linearized theory to  hold. Thus 

d = Aeiwt + O(A2), say. 

This wave will then interact with the infinitesimal water wave GY = 6B eiot, 

generating the side bands a t  frequencies w 2 r. Thus 

d = Aeiwt + { A  e i b + U ) ) e  + A e i ( w - 4 t  + +- - 1 0(S2)7 

where A ,  are of order 6. To make this ordering more explicit, we may write 

6-2 
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where A, are interaction coefficients defined via 

(a2 - (W + u ) ~ } A ,  = A, SAB, 

(Q2 - (W - c)'] A- = A- GAB*, 

where an asterisk denotes the complex conjugate. The equation governing the 
low frequency behaviour will now be 

d2&Y/dt2+X2&Y = {,u-AAT +,u+A*A+)eivt+O(G2), 

where ,uk are interaction coefficients and we have shown the terms of order 6 
explicitly. Thus it is clear that for an onset model (6-tO) the only interaction 
which must be included is 

W , W * U +  g. 

It is precisely this int,eraction which is considered in the Mahony & Smith model. 

2. Model equations 
We consider an idealized situation where the beaker has a rigid base and is full 

of water, and propose to solve V2@ = 0 in the cylindrical region 0 < r < R, 
0 < 8 < 2n, - H < z < 0, where @ ( r ,  8, z ,  t )  is the velocity potential of the en- 
closed incompressible inviscid fluid, which is in irrotational motion. It should be 
noted that since this avoids two major difficulties of the physical system, namely 
the effect of the glass above the waterline and the effect of the bottom corner on 
the vibrational modes of the beaker, we are here deriving only approximate 
model equations for the beaker configuration. 

If we denote the undisturbed free surface by z = 0 and expand the surface 
boundary conditions to second order jointly in the velocity potential @ and the 
surface displacement 5 about this mean position, we obtain the following results: 
the surface kinematical condition at  z = 0 is 

@z + Q Z Z C  = Q + @r Cr ++@o 6 ( l a )  

@t +@tz[+Q(V@)2+g(; = 0. ( I b )  

and the dynamical condition a t  z = 0 is 

Similarly, expanding the boundary conditions at  the side wall to second order 
jointly in the velocity potential 0 and the side-wall displacement 6 about the 
mean position r = R, we obtain the kinematical condition on r = R as 

@r + Q9.r 5 = 6t + @z L + r-2Q, 6, 

&!& -k K v 4 5  = - @t - @ t r ( -  $(v@)' +F, 

(1c) 

(14 

and the dynamical condition on r = R as 

where M and K are physical constants of the boundary shell ( M  being its mass per 
unit area and  its flexural rigidity), the water density has been set equal to unity, 
and 9 represents the external driving force. [It should be noted at this stage that 
since the linear bending equations can be shown to be reasonable for quite large 
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amplitudes (see Timoshenko & Woinowsky-Krieger 1969, chap. 15), we neglect 
here any nonlinearities from this source.] To complete the set of boundary condi- 
tions, we must add the condition of zero normal velocity a t  the base of the beaker, 
i.e. 

@ , = O  on z =  - H .  (1 e )  

We now intend to use Green's identity 

Volume Surfaces 

(where n denotes an outward normal to the surface) to involve the boundary 
conditions listed above. We set f = @ and put g equal to the solution 6 of the 
linearized system given below. Considering for the moment just the high fre- 
quency natural mode and denoting it by @(r, 0, z )  eiSlt, we shall have V26 = 0 
together with the linear boundary conditions: 

@,,=i~c, i ~ 6 + g c = 0  on z = o ,  

@ , = O  on z =  - H ,  

A 

A 

(3) 1 A A 

Qr = iQC, -MQ2C+~V4C = -iQ@ on r = R, 
A 

where we have used g and [ to denote thz surface and side-wall displacements 
corresponding to the velocity potential 0. [For the low frequency modes we 
simply replace the resonance frequency Q by C in (3).] Using Green's identity ( 2 )  
we now have 

at (4) 
Top surface, Z=O Side walls, r = R  

where we have used the condition of no flow through the base of the beaker. [We 
note here that the applicability of these equations can be judged by using them 
in a Galerkin calculation to find the resonance frequencies i2 and C. We do this in 

To proceed further we must relate parameters such as @ and @, and give an 
expression for the driving force, which we have denoted above by F. We refer to 
Mahony & Smith's paper and the discussion in 3 1 for the appropriate form for 
@, c, 5 and 3, writing these as 

5 4.1 A 
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It should be noted that this expression for 9 corresponds to driving the beaker in 
its (m - 1)th bell mode a t  high frequency w ,  and that we choose the tangential 
dependence of the low frequency wave as 

1 
(cos 2me) 

in order to simulate the wave generated. Here A ,  A, and B are slowly varying 
functions of time, while aH, QL, cH, &, C H ,  tL and f are functions of the radial 
and vertical co-ordinates r and z, where the subscript indicates a high or low 
frequency mode. 

Using the above representations, we see that to first order (for the high fre- 
quency case) we must have 

A 

CD = cos me, g = (sH cos me, ( = CH cos me. ( 6 )  

Similarly, when we consider the low frequency case, we must use 

Substituting (1) and (3) into the Green's identity (4) thenleadsus to thegovern- 
ing equation for the high frequency variation : 

o = J- [gCP&Aei"t+*) + n 2 g ~ , + g p 2 { ( A ~ ~ + 2 i w A ~ - ~ ~ A ) e ~ ~ ~ + * } + g P a n T ~ / a t l  
TOP 

+ j [ C P ~ K V ~ C ( A ~ ~ " ~ +  *) + Q~~N,+(KV~Q(A,,+ 2 i w ~ , - w 2 ~ )  eiot + *I 
Sides + ( K V 4 l -  MiPC) a2v4/at1, 

where Ni is used to denote the component of frequency w of the term 

Q'tz 5+ B(V@I2 on x = 0 for i = 1, 

arcr +r-2aoYe -Qzz5 on z = O for i = 2, 

@ t r [ + & ( V @ ) 2 - 9  on r = R for i = 3, 

and QZtz ++@e[e - Qrr.$ on r = R for i = 4. 

We now take account of the slow temporal variation of 6 and (, which enables us 
to ignore second and higher derivatives of linear terms as well as first and higher 
derivatives of nonlinear terms. The high frequency equation then becomes 

[g&Q2 - w2){Aeiot + *} + WQV, + gg2(2iwAt eiot + *} + g Q a ~ ~ / a t ]  

where the terms Ni are appropriately simplified forms of the original nonlinear 
terms. On substituting (6) into the above and performing the 8 integrations, we 
are able to write down very lengthy equations governing the high frequency 
behaviour when either of the two waves is present in the system. 
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Onz = 0 

TABLE 1 .  Magnitudes of the integrands. R = 836 s-l, C = 20.9 s-l, M = 0.45 g cm-2, 
14%, H = 17.0 cm; from Huntley (1973). R = 8.25 cm, K = (6.39 x 108) dyn cm 

Since the equations mentioned above are so lengthy, we should like to be able 
to pick out the dominant terms. In  order to estimate the magnitude of all the 
terms we must decide on two basic parameters. For these we choose the high 
frequency wall displacement tH and the low frequency surface displacement cL, 
since all other terms can be small or have small derivatives in some region. Using 
the linearized boundary conditions (3),  we can now estimate the magnitude of the 
integrands in the equations in terms of the high and low frequencies i2 and (T. We 
shall quote the results first, in table 1, and give an explanation of the more com- 
plicated estimates afterwards. 

These estimates can be obtained by two routes, which in most cases give the 
same result. One ca.se is more complicated, however, and it is this one that we shall 
explain in detail. Consider the estimation of a@,,/ar on the side wall r = R. We 
expect the low frequency part of the velocity potential @ to be largest near the 
surface z = 0, and so we use the low frequency surface dynamic condition to 
obtain QL N (ig/a) cL. A rough estimate of a@,/ar is then (ig/aE) cL. To check 
this we use the low frequency kinematic side-wall condition to obtain the estimate 
a@,,/& N iacL and substitute the value of tLlr=R obtained previously from the 
dynamic conditions on the side wall. This then gives the quoted result a@,/ar N 

(igcr/M02) cL, which is a significantly better estimate than the previous one. All 
other terms in table 1 were obtained in a similar, but simpler, manner. 

The above estimates then lead us to consider the simplified equations given 
below, all terms neglected being at  least an order of magnitude smaller than those 
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retained. For the high frequency behaviour with an axially symmetric wave pres- 
ent, we have 

and with a cos 2m0 wave present we have 



Resonance of a liquid-Jilled beaker 89 

To evaluate these integrals we must decide how to represent the linear free modes 
of the system. The displacement of the side walls can be represented by a Fourier 
cosine series, i.e. 

while the velocity potential is composed of terms which correspond to the im- 
posed side-wall displacement together with terms that can be associated with the 
free-surface displacement. For example, 

(“3 Im(nm/Il)  

cosh A, (z + H )  
+io 5 ’, A,sinh (A, H )  

@H = i!J~;,cos - 
n H (nn/H) I; (nnR/H) 

Jm (4 r), 

with JA (A, R) = 0. In  principle we could use truncated forms of these expansions 
to solve the linear eigenvalue problem (3), and indeed the low frequency surface 
displacement is well represented by 

CL = Jo(Alr) or CL = J2m(A1r), with X2 = Alg. 

For high frequency modes, however, the truncated expansion is not very accurate 
and so it would seem logical to use the experimentally observed z dependence of 
&onr = R to help correct for these simplifications. Setting gB)r=n = n + cos (nz /H)  
and performing a least-squares fit using the experimental data gives n = 0.91 and 
a good fit with the experimental observations (see figure 2). 

To evaluate the coefficients 8, we now use a technique very similar to that 
used earlier. We assume the existence of a function Y ( r ,  8, z )  such that V2Y = 0 
with Yrlr=R = 0 and YzIZI--H = 0. Using Green’s theorem, we then have 

0 = (@VZY-YVZ@) s 
Volume 

= f (@Y?,-Y@,). 

Thus 
J 

Sides+ top+bpttom 

where we have used the linearized boundary conditions to eliminate 
@ I , = ,  and (DSl2=, in favour of (and 5. [This effectively avoids any trouble in the 
surface integral due to @ being small on z = 0.1 We now set 

Y? = J m ( q r )  c o s r n 8 ( c o s h ~ ~ ( ~ + H ) / s i n h ~ ~ H ) ,  

with J ; ( q R )  = 0 for i = 1, 2, ... . Thus 
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By using the above representations for gH and a@,/az, together with the ortho- 
gonality of the J, ( K ~  T )  (see Abramowitz & Stegun 1965, chap. 1 l ) ,  we are able 
to evaluate the ,8,. The first few of these values (for the lowest mode, m = 2 )  are 

pl = -4.03, ,82 = +1.94, ,83 = -1.55. 

Substituting all these values into (8) and (9) and setting A = w - Q, we obtain 
the h a 1  high frequency model equations. When an axially symmetric wave is 
present in the system, we have 

{A+ B* + A -  B} Q4q1 + RQ2F%3 

R2H2 H4 
(10) (1 + 2n2) + 2 -  - + - 

A ,  +iAA = 

whereas when a cos 2m8 wave is present we have 

&{A+ B* + A -  B} Q4q2 + RQ2F q3 

R2H2 H4 
(11)  

A,  +iAA = 

(1 + 2n2) + 2 -  - +- 
Here 

g1= J R ~ ~ t  ( ~ 1  r )  {a1 Jm (K1  r )  + p 2  J, ( K 2  r )  + * * .>2 dr, 

g 2  = 1 r~2m (A, r )  

0 

R 

0 
Jm (K1 r )  + ~ 2  ~ r n  (K2 r )  + ***>zdr 

and 

%a =so - H  f(n+cos;)dz. 

We must now return to (7) and repeat the previous calculations for the low 
frequency case. Using the same estimates as previously, we can derive equations 
analogous to (8) and (9). In this case they coincide (although the representation 
for CL is different for the two wave modes), and we have 

R 

0 
0 = 2g {B(C2 - aZ) + 2iaB,}/ T C ~  dr + Z2{A+ A* +AT A 

Using either CL = JO(hlr) or cL = J2,(A1~) according to the wave present then 
gives 

R 
0 = 2g{B(Z2-a2)+2iaBt}~  0 rJ;(A,r)dr 

-Z2{A+A*+ATA} Q2JRrJo(Al~){,81 J,,(K~T)+ ...} 2dr 
0 

or 

0 = 2g(B(Z2 - (r2) + 2iaBJ rJgm (A,r) dr 1: 
-X2{A+A*+ATA}Q2 T J ~ ~ ~ ( A ~ ~ ) { , ~ ~  J , ( K ~ T ) +  . . . }2dr .  SR 

Setting 6 = n-X gives us the h a 1  low frequency model equations. For an 
axially symmetric wave we have 

B,+isB = ( 1 2 )  
{A+ A* +A? A}  Z2Q2 q1 

4 i U g q  
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FIGURE 3. Theoretical relation between the neutral-stability curves for the 
two water-wave modes. 

whereas for a cos 2mf3 wave we have 

91 

Here and q2 are as defined above, and 

(A ,  r )  dr,  g5 = I R ~ J g r n  (A, T )  dr. 
0 

3. Evaluation of the coupling coefficients a and p 
By comparing (10)-(13) with the definitions of LX and /? in Mahony & Smith’s 

paper we can evaluate the coupling coefficients LX and p in terms of the Wi. In  the 
present notation, Mahony & Smith’s equations become 

A,  + iAA = drive + ia(A+ B* +A-  B),  

A+, + i(A + (T) A+ = iaAB, A_, + i ( A  -a) A -  = iaAB*, 
B,+iSB = ip(A,A*+ATA). 
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[For ease of comparison, we have here omitted the terms due to viscous damping.] 
So, for the axially symmetric wave, we have 

and p = - cQ2V1/4g%& 

whereas for the cos 2mB wave we have 

and 

[It should be noted that the value of n will depend on the mode m chosen. We are 
here concerned with m = 2, for which n = 0-91 as explained above.] 

Knowing the coupling coefficient ap, we can now complete the experimental 
verification using the beaker configuration, and can plot graphically the rela. 
tionship between the neutral-stability curves for the two different water-wave 
modes, for comparison with Huntley (1972, figure 5). This is shown in figure 3, 
where we have used theoretical values of the damping rates given by Case & 
Parkinson ( 1  957) to construct the neutral-stability curves (Huntley 1972, 
equations (2)). The theoretical value of ap for the axially symmetric wave is 
2.600 x lo5 ~ m - ~ ,  whereas the experimental value quoted in Huntley (1973) is 
2.025 x l o 5  cm-*, so the comparison between theory and experiment is seen to be 
quite good. 

One further comparison between the linear theory and the experiment can 
be made, by deriving expressions for the high and low resonance frequencies Q 
and Z. This is done in $4. 

p = - CQ2 V2/4g V5. 

4. Galerkin calculation for the resonance frequencies of the beaker 
configuration 

We here propose to use the Galerkin method to estimate the high and low 
resonance frequencies !2 and C in the beaker experiments. I n  order to do this, we 
must first decide on the appropriate eigenmodes to use. As in the previous section, 
the r variation of the low frequency surface displacement is well represented by 
the natural water-wave modes J, (hi r )  or J,, (hi r )  with Jk (hi R) = Jim (hi R) = 0. 
Ideally, we should like to represent the high frequency side-wall displacement in 
terms of the eigenmodes of a clamped-free cylindrical shell, so that 5 = .Ez = 0 
a t  z = -Hand EZz = .i&, = 0 a t  z = 0 (see Bickley & Talbot 1961, chap. 14). The 
analytical description of these modes is not simple, however, and so we seek some 
form of Fourier representation. 

Owing to the nature of a Fourier representation, we can accurately simulate 
only two of the four edge boundary conditions. For high frequency waves the 
top and bottom boundary conditions on @, 

@ , = O  on z =  -H 
and 

Qz = (Q2/g) Q on z = 0, 
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indirectly impose the conditions 

and 

Thus we are free to choose the Fourier representation to satisfy the further con- 
ditions 

and 

This gives us 

( = O  on z = - H  

Ezm = 0 on z = 0. 

m 

( 1 4 a )  

which, we note, is not the same representation as that used in $ 2 .  However, the 
comparison between theory and experiment in figure 2 shows it to be an equally 
valid approximation. 

We are now in a position to use the kinematical side-wall condition Q r l T E R  = 

in6 and the rigid bottom condition ce;zlz=--H = 0 to find the high frequency series 
representation for the velocity potential Q. We have 

w cos { (2n + 1 )  nz/2H} I,, { (2n + 1 ) nr/2H} [ (2% + 1) ( n / 2 H )  1; {( 2n + 1 )  nR/2H}  
@H = ifi 2 a, 

n=O 

cosh A, z 

coshA z 

W 

+izl Ync A, sinh hi H ~m ( ~ i r ) ]  

+" i?lpi A, sinh A, +H)Jm(A,r), H 

where the pi terms come from the representation of the free-surface displacement 
as 

CH = ZPi Jm (Air) ,  (14c) 
1: 

with Qz = iQC on z = 0. To evaluate the coefficients yni we use the bottom 
boundary condition Qz = 0 on z = - H .  Then 

so 

These integrals can be evaluated analytically (see Abramowitz & Stegun 1965, 
chap. 11) to yield the solution 

( 1 4 4  
( -  (2n+ 1 ) n / H  

Yni  = R(1- (rn/hjR)2}'Jm(AiR){h~+ [ ( 2 n +  1)77/2H]2}' 
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low frequency equations we have 
In a very similar manner, when we are dealing with the axially symmetric 

cos((Zn+ 1)n-z/2H}I0((2n+ l )nr /2H)  
( % + I )  (n/ZH)&{(Zn+ l ) n R / Z H }  

QL = ic c a, [ 
0 

Jo (hi .)I m cosh hi z 
+i??l Yni hi sinh hi H 

m cosh hi ( x  + H )  +ic x pi Jo (hi r )  i= hi sinh A, H 

i 
CL = CPiJo(hir) 

( -  I ) ( % +  l ) n / H  
Ynj = RJ, (hi R) {A; + [(2n + 1) -/r/2~12} * 

and 

When a cos 2mB wave is present we have 

and 

Calculation for axially symmetric low-frequency wave 

For the low frequency modes we are guided by the physical situation to charac- 
terize the motion in terms of surface displacements, and so seek to evaluate the 
ai series in terms of the pi. We consider a function Y such that V2Y = 0 with 
Yz = 0 on z = - H ,  0; Green's theorem and the bottom boundary condition on 
4, then give us the identity 

STOP4,ZY, 

J O R  

0 = (@Y, -CD,Y) - 
Sides 

0 

- H  
so that 0 = Zn-RI (@Y, -4,,Y!)dz-2n r0,Ydr.  

Using the linear boundary conditions (3) we can rewrite this as 
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We now choose 

Y =  1 0 { ( 2 j +  i ) n r / 2 H }  
(2j + 1) (n/2H)&,((2j + 1) nR/2H} 

ca cosh A, t 
‘ji hi sinh A, H Jo (hi r )  

95 

and substitute the representations (15) into (17). Finally, we s e t j  = 0 and trun- 
cate the p, and yii series after one term to obtain 

where we have ignoIed terms of order exp ( - A, H )  since the depth H is assumed 
large. From (15d)  we can evaluate yo, to get 

which we write as a. = C,p,. 
We now consider the free-surface dynamic boundary condition 

and take the J ,  (A, r )  component of this equation to obtain an expression for the 
resonance frequency C. Thus 

+ gpl JoR ~ J $ ( A ,  r )  dr,  

+A; + ( T / ~ H ) ~  ‘ (19) 

which simplifies to 

2c1 I C2 = gRJo ( A ,  R)/( RJO (4 R) 
A, 

We emphasize that this is the (linear) surface wave frequency, taking into account 
the flexibility of the beaker through the C, term. We note that for a rigid beaker 
we have C2=gAl as would be expected. 

If we now substitute the expression (18) for C, and the experimental values 
quoted earlier into (19), and solve the resulting quadratic in Z2, we obtain the 
theoretical estimate of the resonance frequency as C = 3.36 Hz. This compares 
very well with the experimental value of 3.33 Hz and the value (gA,)i  = 3.40 Hz. 
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Calculation for cos 2mB low frequency wave 

We now make a parallel with the work done in the previous subsection and calcu- 
late the resonance frequency C for the cos 2mB water wave. If we set 

cosh A, z 
A, sin11 A, H + 'js 

substitute the representations (16) into (17), and continue as before we obtain 

I (n/HI2 
- ' [A, R{A; + (n/2H)2}2 

f c2p,. 

Taking the J,, (A, r )  component of the free-surface dynamic boundary condition 
then gives the following equation for C2: 

A; + (n/2H)2 
C2 = gRJ2, (A, R)  

Again, to first order we have Cz = gh, as expected. The theoretical estimate 
obtained by setting m = 2 (as in the experiments) is X = 4-00 Hz, which again 
compares well with the experimental result (X = 4.10 Hz) and the value (gAl) t  = 
4.00 Hz. We note here that the Galerkin method for the wave frequencies is only 
a little more accurate than the formula C2 = gh,. 

Calculation for high frequency mode 

For the high frequency mode we characterize the motion in terms of side-wall 
displacements, and seek to evaluate the pi series in terms of the ai. To do this we 
employ the identity 

where 

so that YE = 0 on z = - H and Yp = 0 on r = R. Hence, if we use a one-term 
representation for 6 it  follows that 
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which is an equation for pi in terms of a,,. If we now ignore small terms such as 
gh,/Q2 and l/cosh hi H we have the approximate expression 

- 2 4  a. 
+ RJ, ( A ~  R) [i - ( ~ / A ~ R ) ~ I  [A; + ( n / 2 ~ ) 2 3  * 

We now consider the dynamic side-wall boundary condition 

-Q2Mc+~V4E = -iQ@ on r =R. 
If we substitute into this our expressions for < and @, and take the cos (n42H)  
coefficient of the resulting expression, we obtain an equation for the resonance 
frequency R (where we have again truncated the series representations after one 
term) : 

Substitution of the experimental parameters for the case m = 2 into this equation 
then gives Q = 143.08 Hz, which compares well with the experimental value 
R = 133.00 Hz. It should benoted, however, that thevalueof ~isfairlyinaccurate 
(Huntley (1973) quotes 14%) owing to irregularities in the thickness of the 
beaker wall. The total error in the theoretical value is estimated to be about 
10%. [An alternative procedure is to use the above equation to evaluate K. This 
is done by noting that when the beaker is empty the terms in Im(mR/2H) and 
J, (A ,  R) are not present. Thus if we have an experimental value for R with the 
beaker empty, (20) gives an expression for K. However, great care must be taken 
to ensure that the truncations used in deriving (20) are still valid.] 

The author would like to record his gratitude to Dr R. Smith for help during the 
course of this investigation and to Dr A. Craik for reading a previous manuscript 
of this paper. 
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